IQFROG 1.5 µm

Frequency-Resolved Optical Gating Pulse Analyzer

KEY FEATURES

- 1520 - 1610 nm input pulse wavelength range
- Perfect for C & L band fiber lasers
- Intensity & phase measurement for pulses 300 fs to 50 ps long
- Autocorrelation measurement up to 50 ps pulses
- Connectorized optical input
- Software driven automated operation
- Dedicated software for measurement and recovery
IQFROG 1.5 µm

The User-Friendly Optical Pulse Analyzer

The IQFROG measures pulse intensity and phase in both spectral and temporal domains, yielding a complete pulse characterization. With its long delay arm and high resolution spectrometer, it measures chirped pulses up to 50 ps wide, or up to 10 ps wide if transform limited. Making it a perfect fit for C-band femtosecond and picosecond pulsed fiber lasers.

High Spectral Resolution

The FROG measurement technique requires the measurement of second harmonic spectrum of the pulse. The resolution of the spectral measurement often limits the broadest pulse width that a pulse analyzer can measure, most other competitive products can only measure pulses less than 1 ps.

Coherent Solutions’ IQFROG has a built-in high-resolution spectrometer to enable measurement of transform limited pulses of up to 10 ps width, or broader if the pulse has a frequency chirp.

Long Temporal Scan Range

The IQFROG uses a long mechanical translation stage to provide up to 200 ps of scan range to allow autocorrelation measurement of up to 50 ps long pulses. It is one of the few pulse analyzers on the market which can measure such broad picosecond pulses, as well as short pulses down to 300 fs width. In comparison the competitive SPIDER technique is limited in the ability to measure pulses broader than 1 ps.

Autocorrelator Function

The IQFROG can scan and save autocorrelation traces, even if the pulse is too broad (with a very narrow spectral width) or is unsuitable for FROG recovery. The IQFROG can be used as an autocorrelator and measure pulses up to 50 ps.

Connectorized Input

The connectorized input makes coupling of the beam easy and fast by eliminating the need to align the beam into the unit manually. IQFROG is by far the most easy-to-use optical pulse analyzer on the market.

Full Software Control

The mechanical control, alignment and tuning is controlled by the software, no more need to align manually.

Ease of Use

The IQFROG with its connectorized input, user-friendly full software control and USB connection to PC, makes it the smarter plug and play pulse analyzer.

How it Works

The IQFROG is a spectrally resolved Second Harmonic Generation (SHG) autocorrelator. It can resolve sub-picosecond pulses since it is not limited by the response time of the detector. At each delay position on the autocorrelation, a complete SHG spectrum is measured, recording both the spectral and temporal characteristics of the pulse simultaneously. The two dimensional plot of SHG spectrum as a function of delay is referred to as a ‘spectrogram’. Once a spectrogram has been measured, a fast mathematical recovery algorithm is used to completely recover all the characteristics of the pulse, including pulse shape, spectrum, chirp and group delay.
Software User Interface

The IQFROG comes with dedicated all-in-one software, 'Optical Pulse Analyzer' (OPA) which controls the mechanics and measures and recovers optical pulses using an intuitive graphical user interface.

FROG Applications

- Use the IQFROG to obtain the complete expression of electric field of your optical pulse, so that it can be used in numerical simulations
- Characterize and optimize the optical pulses generated from lasers such as, Erbium Doped Fiber Laser, Gain switched laser, Saturable Absorber mode-locked laser and externally modulated pulse source
- Generate transform-limited pulses by compensating for the chirp measured using IQFROG
- Generate optical pulses with desired intensity and chirp profiles using an arbitrary optical filter and check the results with an IQFROG
- Device characterization using comparative measurements of input and output pulses

Papers Relating to FROG Measurement Techniques

Frequency Resolved Optical Gating with the use of Second Harmonic Generation

Complete Characterisation of pulse propagation in optical fibres using Frequency-Resolved Optical Gating
L.P. Barry, J.M. Dudley, P.M. Bollond, J.D. Harvey, R. Leonhardt.

Direct measurement of pulse distortion near the zero-dispersion wavelength in optical fiber by Frequency-Resolved Optical Gating

Simultaneous measurement of optical fibre non-linearity and dispersion using Frequency Resolved Optical Gating

Optimization of Optical Data Transmitters for 40-Gb/s Lightwave Systems Using Frequency Resolved Optical Gating
L.P. Barry, S. Del burgo, B.C. Thomsen, D.A. Reid, R.T. Watts, J.D. Harvey.
Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input pulse temporal FWHMa</td>
<td>0.3 - 10 ps (transform limited pulses)</td>
</tr>
<tr>
<td>Temporal scan range</td>
<td>200 ps</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>15 fs</td>
</tr>
<tr>
<td>Input centre wavelengthb</td>
<td>1520 - 1610 nm</td>
</tr>
<tr>
<td>Input pulse spectral FWHM</td>
<td>0.2 - 10 nm</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>120 pm</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>Independent</td>
</tr>
<tr>
<td>Input RF clock required</td>
<td>No</td>
</tr>
<tr>
<td>Input connector type</td>
<td>FC/APC or FC/PC</td>
</tr>
<tr>
<td>Input peak power (saturation)</td>
<td>7 W2</td>
</tr>
<tr>
<td>Input peak power (sensitivity)c</td>
<td>0.005 W2</td>
</tr>
</tbody>
</table>

Notes:

a Broader pulses of up to 50 ps are measurable if the spectral FWHM is within the specified range.
b Other centre wavelengths are also available. Please enquire for details.
c Minimum value needed for a good recovery; product of average and peak power.

General Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions W x D x H</td>
<td>440 x 450 x 128 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>14 kg</td>
</tr>
<tr>
<td>PC interface method</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Operating system requirement</td>
<td>Windows 7, 8 or 10 (32 or 64 bit)</td>
</tr>
<tr>
<td>Power supply</td>
<td>~100 - 240 V; 50/60 Hz; 500 W</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>5 °C to 45 °C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40 °C to 70 °C</td>
</tr>
</tbody>
</table>

NOTE: The IQFROG 1.0 µm is also available for characterizing 1000 - 1100 nm wavelength.

Product Warranty

All Coherent Solutions’ products come with a standard 3 year warranty.

Ordering Information

IQFROG 1.5 µm:

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>IQFROG-1.5 MICRON - LiNbO\textsubscript{3} - XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC = FC/PC</td>
<td>FC = FC/PC</td>
</tr>
<tr>
<td>FA = FC/APC</td>
<td>SC = SC/PC</td>
</tr>
<tr>
<td>SC = SC/PC</td>
<td>SA = SC/APC</td>
</tr>
</tbody>
</table>

The IQFROG is supplied as the optical pulse analyzer only. The software is supplied on a media. The computer screen is not included in the package.

© 2017 Coherent Solutions Ltd. All rights reserved. No part of this publication may be reproduced, adapted, or translated in any form or by any means without the prior permission from Coherent Solutions Ltd. All specifications are subject to change without notice. Please contact Coherent Solutions for the latest information.

To find out more, get in touch with us today.

Coherent Solutions Ltd
Unit A, 28 Canaveral Drive
Rosedale, Auckland 0632
New Zealand

General enquiries: info@coherent-solutions.com
Technical support: support@coherent-solutions.com
Tel: +64 9 478 4849
Fax: +64 9 478 4851

www.coherent-solutions.com